Given a graph, a vertex coloring assigns a label, traditionally called 'color', to each vertex of the graph such that no two adjacent vertex have the same color. In this assignment, vertex coloring has been performed using the backtracking approach.

Algorithm vertex_coloring_using_backtracking

This algorithm tries to perform m-coloring of the given graph by using the backtracking approach. Input: A graph $G(V, E)$ (where $V=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ with $n=|V|$, the number of vertices in the graph G and $E=\left\{(i, j): \exists\right.$ an edge between v_{i} and $\left.\left.v_{j}\right\}\right)$, the set of colors $C=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{m}\right\}$ with the total number of available colors $m=|C|$, the current vertex to be colored v_{i} (starting with v_{1}) and current vertex coloring as a mapping $f: V \rightarrow C$.
Output: Returns true when the graph is m-colorable, with the complete coloring in f. Otherwise, returns

false.

Steps:
Step 1: (If coloring is complete) If i is greater than n then
Step 2: Return true.
[End If.]
Step 3: $\quad k \leftarrow 1$.
Step 4: Repeat step 5 to 18 while $k \leq m$.
Step 5: \quad valid \leftarrow true, $j \leftarrow 1$.
Step 6: \quad Repeat step 7 to 10 while $j \leq n$.
(If vertices v_{i} and v_{j} are adjacent, v_{j} has been assigned a color, $f\left(v_{j}\right)$
and $c_{k}=f\left(v_{j}\right)$, then the color c_{k} can not be used for vertex v_{i}, so next color is tried.)
Step 7:
Step 8:
Step 9:
If $(i, j) \in E, f\left(v_{j}\right)$ exists and $c_{k}=f\left(v_{j}\right)$ then
valid \leftarrow false.
Break.
[End If.]
Step 10: $\quad j \leftarrow j+1$.
Step 11: If valid is false then
Step 12: \quad Continue at step 18 in the way towards next iteration. [End If.]
(Assign $f\left(v_{i}\right)$ to c_{k}.)
Step 13: $\quad f \leftarrow f \cup\left\{\left(v_{i}, c_{k}\right)\right\}$
Step 14: Recursively invoke vertex_coloring_using_backtracking with the vertex v_{i+1} to be colored, returning in success.
Step 15: If success is true then
Step 16: Return true.
[End If.]
(Discard and retract the mapping of $f\left(v_{i}\right)$.)
Step 17: $\quad f \leftarrow f \backslash\left\{\left(v_{i}, c_{k}\right)\right\}$
Step 18: $\quad k \leftarrow k+1$.
[End of Repeat.]
Step 19: Return false.

