Given a graph, a *vertex coloring* assigns a label, traditionally called 'color', to each vertex of the graph such that no two adjacent vertex have the same color. In this assignment, vertex coloring has been performed using the *backtracking* approach.

Algorithm vertex_coloring_using_backtracking

This algorithm tries to perform *m*-coloring of the given graph by using the backtracking approach. Input: A graph G(V, E) (where $V = \{v_1, v_2, \dots, v_n\}$ with n = |V|, the number of vertices in the graph G and $E = \{(i, j): \exists$ an edge between v_i and $v_j\}$), the set of colors $C = \{c_1, c_2, c_3, \dots, c_m\}$ with the total number of available colors m = |C|, the current vertex to be colored v_i (starting with v_1) and current vertex coloring as a mapping $f: V \to C$.

Output: Returns **true** when the graph is *m*-colorable, with the complete coloring in f. Otherwise, returns **false**.

Steps:

Step 1:	(If coloring is complete) If <i>i</i> is greater than <i>n</i> then
Step 2:	Return true .
1	[End If.]
Step 3:	$k \leftarrow 1$.
Step 4:	Repeat step 5 to 18 while $k \leq m$.
Step 5:	valid $\leftarrow true, j \leftarrow 1.$
Step 6:	Repeat step 7 to 10 while $j \le n$.
1	(If vertices v_i and v_j are adjacent, v_j has been assigned a color, $f(v_j)$
	and $c_k = f(v_i)$, then the color c_k can not be used for vertex v_i ,
	so next color is tried.)
Step 7:	If $(i, j) \in E$, $f(v_j)$ exists and $c_k = f(v_j)$ then
Step 8:	valid \leftarrow false .
Step 9:	Break.
oup y.	[End If.]
Step 10:	$j \leftarrow j + 1.$
0000 100	[End of Repeat.]
Step 11:	If valid is false then
Step 12:	Continue at step 18 in the way towards next iteration.
1	[End If.]
	(Assign $f(v_i)$ to c_k .)
Step 13:	$f \leftarrow f \cup \{(v_i, c_k)\}$
Step 14:	Recursively invoke vertex_coloring_using_backtracking
1	with the vertex v_{i+1} to be colored, returning in success.
Step 15:	If success is true then
Step 16:	Return true .
1	[End If.]
	(Discard and retract the mapping of $f(v_i)$.)
Step 17:	
Step 18:	
1	[End of Repeat.]
Step 19:	Return false .
1	