Homework on simplifying expressions using Karnaugh Maps
and designing circuits using NAND and NOR gates from them
Sudipto Mallick
(Serial No.: 571)

1. $f=\sum(0,2,4,5,6)$

The K-Map for this boolean expression of 3 variables is

The simplified form is
$f=A \bar{B}+\bar{C}$
The expression suitable to form a circuit using NAND gate is

$$
\begin{aligned}
f=\overline{\bar{f}} & =\overline{\overline{A \bar{B}+\bar{C}}} \\
& =\overline{\overline{A \bar{B}} \cdot \overline{\bar{C}}} \\
& =\overline{\overline{A \cdot \bar{B}} \cdot C}
\end{aligned}
$$

The K-map for \bar{f} is

The simplified expression for \bar{f} is
$\bar{f}=\bar{A} C+B C$
The expression suitable to implement the given expression using NOR gates is calculated as follows:
$\overline{\bar{f}}=\overline{\bar{A} C+B C}$
$f=\overline{\bar{A} C} \cdot \overline{B C}$

$$
f=\overline{\bar{f}}=\underline{\overline{\overline{\bar{A} C} \cdot \overline{\overline{B C}}}}
$$

$$
=\overline{\overline{\overline{\overline{A C}}}+\overline{\overline{B C}}}
$$

$$
=\overline{\overline{A+\bar{C}}+\overline{\bar{B}+\bar{C}}}
$$

2. $f=\Pi(0,2,5,7)$

The K-Map for this boolean expression of 3 variables is

The simplified form is
$f=\bar{A} C+A \bar{C}$
The expression suitable to form a circuit using NAND gate is

$$
\begin{aligned}
f=\overline{\bar{f}} & =\overline{\overline{\bar{A} C+A \bar{C}}} \\
& =\overline{\overline{\bar{A}} \cdot C \cdot \overline{A \cdot \bar{C}}}
\end{aligned}
$$

The K-map for \bar{f} is

The simplified form of \bar{f} is
$\bar{f}=\bar{A} \bar{C}+A C$
The expression suitable to implement the given expression using NOR gates is calculated as follows:

$$
\begin{aligned}
\overline{\bar{f}}= \\
\begin{aligned}
& f=\overline{\bar{A} \bar{C}+A C} \\
& f= \overline{\bar{A} \bar{C}} \cdot \overline{A C} \\
&=\overline{\overline{\bar{A} \overline{\bar{C}} \cdot \overline{A C}}} \\
&=\overline{\overline{\overline{\bar{A}} \overline{\bar{C}}+\overline{\overline{A C}}}} \\
&=\overline{\overline{\overline{\bar{A}}+\overline{\bar{C}}+\overline{\bar{A}}+\overline{\bar{C}}}} \\
&=\overline{\overline{\overline{A+C}+\overline{\bar{A}}+\bar{C}}}
\end{aligned}
\end{aligned}
$$

3. $f=\sum(0,1,2,5,8,9,10)$

The K-Map of this boolean function of 4 variables is

The simplified form is
$f=\bar{B} \bar{D}+\bar{B} \bar{C}+\bar{A} \bar{C} D$

The expression suitable to form a circuit using NAND gate is

$$
\begin{aligned}
f=\overline{\bar{f}} & =\overline{\overline{\bar{B}} \bar{D}+\bar{B} \bar{C}+\bar{A} \bar{C} D} \\
& =\overline{\overline{\bar{B}} \overline{\bar{D}} \cdot \overline{\bar{B}} \bar{C} \cdot \overline{\bar{A} \bar{C} D}}
\end{aligned}
$$

The K-map for \bar{f} is

The simplified expression for \bar{f} is
$\bar{f}=A B+B C+C D+B \bar{D}$
The expression suitable to implement the given expression using NOR gates is calculated as follows:
$\overline{\bar{f}}=\overline{A B+B C+C D+B \bar{D}}$
$f=\overline{A B} \cdot \overline{B C} \cdot \overline{C D} \cdot \overline{B \bar{D}}$

$$
\begin{aligned}
f= & \bar{f}
\end{aligned}=\overline{\overline{\overline{A B} \cdot \overline{B C} \cdot \overline{\overline{C D}} \cdot \overline{\overline{B \bar{D}}}}} \begin{aligned}
& \\
& \\
& =\overline{\overline{\overline{A B}}+\overline{\overline{B C}}+\overline{\overline{C D}}+\overline{\overline{B \bar{D}}}} \\
& \\
& =\overline{\overline{\bar{A}+\bar{B}}+\overline{\bar{B}+\bar{C}}+\overline{\bar{C}+\bar{D}}+\overline{\bar{B}+D}}
\end{aligned}
$$

Figure: The boolean function $\sum(0,1,2,5,8,9,10)$ implemented using NAND gates

Figure: The boolean function $\sum(0,1,2,5,8,9,10)$ implemented using NOR gates

